Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.

نویسندگان

  • Michael L Wong
  • Benjamin D Charnay
  • Peter Gao
  • Yuk L Yung
  • Michael J Russell
چکیده

We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Removal of NOx Gas from Air by TiO2/Polymer Composite Nanofibers

Nitrogen oxides (NOx) released in atmosphere by fuels combustion lead to photochemical smog and acidic rains and have negative effects on human`s nervous system. In this research nanocomposite membranes of Poly Vinylidene Fluoride (PVDF)/ Poly Dimethylsiloxane (PDMS) and Titanium Dioxide nanoparticles (TiO2) with different weight percentage of TiO2 (0.5 and 1) for adsorption of NOx were prepare...

متن کامل

The nitrogen cycle

Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the ...

متن کامل

Electrons, life and the evolution of Earth's oxygen cycle.

The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical...

متن کامل

Life and the evolution of Earth's atmosphere.

Harvesting light to produce energy and oxygen (photosynthesis) is the signature of all land plants. This ability was co-opted from a precocious and ancient form of life known as cyanobacteria. Today these bacteria, as well as microscopic algae, supply oxygen to the atmosphere and churn out fixed nitrogen in Earth's vast oceans. Microorganisms may also have played a major role in atmosphere evol...

متن کامل

Transferable denitrification capability of Thermus thermophilus.

Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Astrobiology

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 2017